

A-LEVEL Physics A

PHYA5 - 1 – Nuclear and Thermal Physics Mark scheme

2450 June 2014

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Question	Answers	Additional Comments/Guidance	Mark	ID details
1 (a)	the amount of energy required to separate a nucleus \checkmark into its separate neutrons and protons/nucleons \checkmark (or energy released on formation of a nucleus \checkmark from its separate neutrons and protons/constituents \checkmark)	 1st mark is for correct energy flow direction 2nd mark is for binding or separating nucleons (nucleus is in the question but a reference to an atom will lose the mark) ignore discussion of SNF etc both marks are independent 	2	
1 (b)(i)	$2_{0}^{1}n \text{ or } _{0}^{1}n + _{0}^{1}n \checkmark$	must see subscript and superscripts	1	
1 (b)(ii)	binding energy of U = 235 × 7.59 ✓ (= 1784 (MeV)) binding energy of Tc and In = 112 × 8.36 + 122 × 8.51 ✓ (= 1975 (MeV)) energy released (=1975 – 1784) = 191 (MeV) ✓ (allow 190 MeV)	1^{st} mark is for 235×7.59 seen anywhere 2^{nd} mark for $112 \times 8.36 + 122 \times$ 8.51 or 1975 is only given if there are no other terms or conversions added to the equation (ignore which way round the subtraction is positioned) Correct final answer can score 3 marks	3	
1(b)(iii)	energy released = $191 \times 1.60 \times 10^{-13} \checkmark$ (= 3.06×10^{-11} J)	Allow CE from (b)(ii) working must be shown for a CE otherwise full marks can be given	2	

	loss of mass (= E / c^2) = 2.91 × 10 ⁻¹¹ / (3.00 × 10 ⁸) ²) = 3.4 × 10 ⁻²⁸ (kg) \checkmark or = 191/931.5 u \checkmark (= 0.205 u) = 0.205 × 1.66 × 10 ⁻²⁷ (kg) = 3.4 × 10 ⁻²⁸ (kg) \checkmark	for correct answer only note for CE answer = (b)(ii) × 1.78×10^{-30} (2.01 × 10^{-27} is a common answer)		
1 (c)(i)	line or band from origin, starting at 45° up to Z approximately = 20 reading Z = 80, $N = 110 \rightarrow 130 \checkmark$	Initial gradient should be about 1 (ie Z=20; N = 15 \rightarrow 25) and overall must show some concave curvature. (ignore slight waviness in the line) If band is shown take middle as the line If line stops at N>70 extrapolate line to N = 80 for marking	1	
1 (c)(ii)	Fission fragments are (likely) to be above/to the left of the line of stability \checkmark fission fragments are (likely) to have a larger <i>N</i> / <i>Z</i> ratio than stable nuclei or fission fragments are neutron rich owtte \checkmark and become neutron or β^- emitters \checkmark	Ignore any reference to α emission. A candidate must make a choice for the first two marks. Stating that there are more neutrons than protons is not enough for a mark. 1 st mark reference to graph 2 nd mark – high N/Z ratio or neutron rich 3 rd mark beta <u>minus</u> Note not just beta.	3	
Total			12	

Question	Answers	Additional Comments/Guidance	Mark	ID details
2 (a)(i)	$\begin{aligned} \lambda &(= \ln 2 / T_{1/2} = 0.693 / 5740) = \\ 1.2 \times 10^{-4} (yr^{-1}) \checkmark \\ &(1.21 \times 10^{-4} yr^{-1}) \end{aligned}$	only allow $3.83 \times 10^{-12} \text{ s}^{-1}$ if the unit has been changed working is not necessary for mark	1	
2 (a)(ii)	(use of $N_t = N_o e^{-\lambda t}$ and activity is proportional to N $A_t = A_o e^{-\lambda t}$) $0.375 = \exp - (1.21 \times 10^{-4} \times t) \checkmark$ $t = \frac{\ln(\frac{1}{0.375})}{1.21 \times 10^{-4}} \checkmark$ $t = 8100 \text{ or } 8200(\text{yr}) \checkmark$	1^{st} mark substitution, allow EC from (a)(i) 2^{nd} mark rearranging, allow EC from (a)(i) Allow t / T _{1/2} = 2^{n} approach 3^{rd} mark no EC (so it is not necessary to evaluate a CE) So max 2 for a CE Full marks can be given for final answer alone. A minus in the final answer will lose the last mark.	3	
2(b)(i) +2(b)(ii)	(it is difficult to measure accurately) the small drop/change in activity/count-rate the small change/drop in the ratio of C-14 to C-12 \checkmark the activity would be very small/comparable to the background or the ratio of C-14 to C-12 is too small or there are too few <u>C-14</u> atoms or there is very little decay	1 st mark needs some reference to a change in count-rate or activity for the mark Be lenient in 2 nd mark In reading a script assume C-14 is the subject. Eg 'there is little activity to work with' scores mark. Also allow any reasonable suggestion. Eg carbon may have been removed by bonding to surrounding material. Don't allow, ' <u>All</u> the carbon has	2	

	or the level of C-14 (in the biosphere) is uncertain (this long ago)√	decayed'.		
Total			6	

Question	Answers	Additional Comments/Guidance	Mark	ID details
3 (a)	the number of atoms in 12g of carbon-12 or the number of particles/atoms/molecules in one mole of substance \checkmark	Not – <i>N</i> _A quoted as a number	1	
3 (b)(i)	mean kinetic energy (= $3/2 \ kT$) = $3/2 \times 1.38 \times 10^{-23} \times (273 + 22)$ = $6.1 \times 10^{-21} \ (J) \checkmark$	6×10^{-21} J is not given mark	1	
3 (b)(ii)	mass of krypton atom = $0.084 / 6.02 \times 10^{+23} \checkmark$ (= 1.4×10^{-25} kg) $\overline{c^2}$ (= $2 \times$ mean kinetic energy / mass = $2 \times 6.1 \times 10^{-21} / 1.4 \times 10^{-25}$) = $8.7 - 8.8 \times 10^4 \checkmark$ m ² s ⁻² or J kg ⁻¹ ✓	1 st mark is for the substitution which will normally be seen within a larger calculation. Allow CE from (b)(i) Working must be shown for a CE otherwise full marks can be given for correct answer only. No calculation marks if mass has a physics error i.e. no division by N_A note for CE answer = (b)(i) × 1.43 × 10 ²⁵	3	
3 (c)	(at the same temperature) the	1st mark requires the word	2	

Total		in the first mark	7	
	mean kinetic energy is the same Or Gases have equal $\frac{1}{2}mc_{rms}^2$ Or mass is inversely proportional to mean square speed / m $\propto 1/\overline{c^2}$ \checkmark $\overline{c^2}$ or mean square speed of krypton is less \checkmark	<u>mean/average</u> or equivalent in an algebraic term 2 nd mark 'It' will be taken to mean krypton. So, 'It is less' can gain a mark Allow 'heavier' to mean more massive' Allow vague statements like speed is less for 2 nd mark but not		

Question	Answers	Additional Comments/Guidance	Mark	ID details
4 (a)	the energy required to change the state of a unit mass of water to steam/gas ✓ when at its boiling point temperature /100°C / without a change in temperature) ✓	Allow 1 kg in place of unit. Allow liquid to vapour/gas without reference to water. Don't allow 'evaporation' in first mark.	2	
4 (b)(i)	thermal energy given by copper block (= $mc\Delta T$) = 0.047 × 390 × (990 - 100) = 1.6 × 10 ⁴ (J) ✓ 2 sig figs ✓	Can gain full marks without showing working A negative answer is not given credit. sig fig mark stands alone	2	
4(b)(ii)	thermal energy gained by water		2	

4(b)(iii)	allow both 12000J and 13000 J (using $Q = ml$) $m = 1.3 \times 10^4 / 2.3 \times 10^6$ $= 0.0057 (kg) \checkmark$ Allow 0.006 but not 0.0060 (kg)	ignore sign of final answer in CE (many CE's should result in a negative answer) Allow CE from (b)(ii) answers between 0.0052 → 0.0057 kg resulting from use of	1	
	and copper container $(=mc\Delta T_{water}+mc\Delta T_{copper})$ $= 0.050 \times 4200 \times (100 - 84) + 0.020 \times 390 \times (100 - 84)$ or $= 3500 (J) \checkmark (3485 J)$ available heat energy (=1.6 × 10 ⁴ - 3500) = 1.3 × 10 ⁴ (J) ✓	Allow CE from (b)(i) working must be shown for a CE Take care in awarding full marks for the final answer – missing out the copper container may result in the correct answer but not be worth any marks because of a physics error. (3485 is a mark in itself)		

Question	Answers	Additional Comments/Guidance	Mark	ID details
5 (a)	It forms a (biological) shield to reduce the (intensity of) radiation from/ for protection from \checkmark <u>neutron</u> (and gamma) radiation \checkmark	Be lenient in 1 st mark. 'Absorbs radiation' is enough to score.	2	
5(b)	See below - QWC		6	
Total			8	

QWC Mar	QWC Mark Scheme					
question		answers		extra infor	mation	mark
5 (b)						6
Marks awarde (QWC) as we the informatic	ed for ell as ti on on p	this answer will be deter he standard of the scient bage 4 and apply a 'best	mine ific r -fit' a	ed by the Quality of V response. Examiners approach to the mark	Written Commur s should also ref king.	nication er to
0 marks	5	Level 1 (1–2 marks)	Le	evel 2 (3–4 marks)	Level 3 (5–6	marks)
		Low Level (Poor to limited): 1 or 2 marks The information conveyed by the answer is poorly organised and may not be relevant or coherent. There is little correct use of specialist vocabulary. The form and style of writing may be only partly appropriate. There will be a few of the guidance points mentioned, but there will be little cohesion in the writing. Before taking the above into consideration a candidate making two or less relevant	Int (M ad ma Th col an we no Th spi or voi us for wri ap Be ab col cat thr sta	termediate Level lodest to lequate): 3 or 4 arks le information nveyed by the swer may be less ell organised and t fully coherent. lere is less use of ecialist vocabulary, specialist cabulary may be ed incorrectly. The m and style of iting is less propriate. efore taking the ove into nsideration a ndidate making ree or four relevant atements from any	High Level (G excellent): 5 of marks The information conveyed by the answer is clear organised, log coherent, usin appropriate sp vocabulary con The form and writing is appro- to answer the question. Before taking the above into consideration candidate make or more relevant statements from or three group marking points below will be con	the a cing five and fical and g becialist frectly. style of opriate the a sing five ant m two s of s listed blaced

stateme of the th marking below is level. Of one man points fo	nts from any ree groups of points listed placed in this ne point for k and two or two marks	of the three groups of marking points listed below will be placed in this level. If all the statements come from only one group a score of 3 marks will be given. Four points from at least two groups will score 4 marks.	in this level. Six statements covering all three groups scores 6 marks but if five or more only come from two groups a maximum score of 5 may be awarded. Significant errors in the physics or order of events will
		groups will score 4 marks.	errors in the physics or order of events will exclude a candidate from this top level.

examples of the points made in the response	extra information
	Marking strategy
Statements expected in a competent answer should include some of the following marking	add up points made by candidates from
noints	Low band
pointo.	If 2 points or less are given the number will
X group	be the lower band score.
$X (\beta_{1})$ needs significant screening (allow lead	Middle Band
here)	If 3 points or 4 are given this is the score
is highly active	provided some points are given in two of
therefore produces heat	the groups.
as activity \propto 1/ half-life (only counted once	Otherwise a score of 3 is given.
regardless of which group it is in)	Top band
so lasts for a short time quoted as 80 days or	If 5 or 6 points are given this is the score
more	but some must be made in each of the 3
	groups. If from 2 groups score 5 if from 1
Y group	group score 3.
Y (α) is easy to screen with metal container (if	
metal is quoted it must be realistic ie not lead)	If the script gives points but they are out of
as activity \propto 1/ half-life (only counted once)	order, eg. put in steel barrels and then
is active for a very long time quoted as 80	place in cooling ponds,
years or more	Or it some true facts are mixed with some
problems over container fatigue	erroneous ones the candidate cannot be in
- , ,	Once the script has been read through the
I reatment group	mark may be adjusted as a consequence
By remote control remove waste	of the organisation and style of the writing
initially place in a cooling pond/water tank	
the water acts as a shield	facts must be related to the situation to be
water utstipates near/lowers temperature	of value.
<u>country point</u> is on site/close to source	So 'Alpha radiation is highly ionising and
as activity ∞ 1/ nall-life(only counted once)	

keep for 1 – 3 years – it will then be cooler highly active waste will be greatly reduced make suggestions for longer term storage – vitrify the active material (to prevent leaking) store underground storage/salt mines in barrels / steel containers geological considerations etc	dangerous to the body' is not a main fact as it is assumed all radiations are harmful. Also facts must be realistic to be considered. 'It is best to store the radioactive waste in lead boxes to screen workers from the radiation' may have some merit but it would not count as a fact.